Pulmonary vasoconstriction by serotonin is inhibited by S-nitrosoglutathione.
نویسندگان
چکیده
Nitric oxide (NO) functions as an endothelium-derived relaxing factor by activating guanylate cyclase to increase cGMP levels. However, NO and related species may also regulate vascular tone by cGMP-independent mechanisms. We hypothesized that naturally occurring NO donors could decrease the pulmonary vascular response to serotonin (5-HT) in the intact lung through chemical interactions with 5-HT(2) receptors. In isolated rabbit lung preparations and isolated pulmonary artery (PA) rings, 50-250 microM S-nitrosoglutathione (GSNO) inhibited the response to 0.01-10 microM 5-HT. The vasoconstrictor response to 5-HT was mediated by 5-HT(2) receptors in the lung, since it could be blocked completely by the selective inhibitor ketanserin (10 microM). GSNO inhibited the response to 5-HT by 77% in intact lung and 82% in PA rings. In PA rings, inhibition by GSNO could be reversed by treatment with the thiol reductant dithiothreitol (10 mM). 3-Morpholinosydnonimine (100-500 microM), which releases NO and O simultaneously, also blocked the response to 5-HT. Its chemical effects, however, were distinct from those of GSNO, because 5-HT-mediated vasoconstriction was not restored in isolated rings by dithiothreitol. In the intact lung, neither NO donor altered the vascular response to endothelin, which activates the same second-messenger vasoconstrictor system as 5-HT. These findings, which did not depend on guanylate cyclase, are consistent with chemical modification by NO of the 5-HT(2) G protein-coupled receptor system to inhibit vasoconstriction, possibly by S-nitrosylation of the receptor or a related protein. This study demonstrates that GSNO can regulate vascular tone in the intact lung by a reversible mechanism involving inhibition of the response to 5-HT.
منابع مشابه
S-nitrosoglutathione inhibits 1-adrenergic receptor-mediated vasoconstriction and ligand binding in pulmonary artery
Nozik-Grayck, Eva, Erin J. Whalen, Jonathan S. Stamler, Timothy J. McMahon, Pasquale Chitano, and Claude A. Piantadosi. S-nitrosoglutathione inhibits 1-adrenergic receptor-mediated vasoconstriction and ligand binding in pulmonary artery. Am J Physiol Lung Cell Mol Physiol 290: L136–L143, 2006. First published August 26, 2005; doi:10.1152/ajplung.00230.2005.—Endogenous nitric oxide donor compoun...
متن کاملS-nitrosoglutathione inhibits alpha1-adrenergic receptor-mediated vasoconstriction and ligand binding in pulmonary artery.
Endogenous nitric oxide donor compounds (S-nitrosothiols) contribute to low vascular tone by both cGMP-dependent and -independent pathways. We have reported that S-nitrosoglutathione (GSNO) inhibits 5-hydroxytryptamine (5-HT)-mediated pulmonary vasoconstriction via a cGMP-independent mechanism likely involving S-nitrosylation of its G protein-coupled receptor (GPCR) system. Because catecholamin...
متن کاملFunctional interactions between 5-hydroxytryptamine receptors and the serotonin transporter in pulmonary arteries.
Pulmonary arterial 5-hydroxytryptamine (serotonin) (5-HT) transporter (SERT)-, 5-HT receptor expression, and 5-HT-induced vasoconstriction can be increased in pulmonary hypertension. These variables were studied in normoxic and hypoxic Fawn-Hooded (FH) and Sprague-Dawley (SD) rats. Furthermore, we compared the functional effects of SERT inhibitors and 5-HT receptor antagonists against 5-HT-indu...
متن کاملThe Xanthine Derivative KMUP-1 Attenuates Serotonin-Induced Vasoconstriction and K+-Channel Inhibitory Activity via the PKC Pathway in Pulmonary Arteries
Serotonin (5-hydroxytryptamine, 5-HT) is a potent pulmonary vasoconstrictor that promotes pulmonary artery smooth muscle cell (PASMC) proliferation. 5-HT-induced K(+) channel inhibition increases [Ca(2+)]i in PASMCs, which is a major trigger for pulmonary vasoconstriction and development of pulmonary arterial hypertension (PAH). This study investigated whether KMUP-1 reduces pulmonary vasoconst...
متن کاملSustained Hypoxic Pulmonary Vasoconstriction in the Isolated Perfused Rat Lung: Effect of α1-adrenergic Receptor Agonist
Background: Alveolar hypoxia induces monophasic pulmonary vasoconstriction in vivo, biphasic vasoconstriction in the isolated pulmonary artery, and controversial responses in the isolated perfused lung. Pulmonary vascular responses to sustained alveolar hypoxia have not been addressed in the isolated perfused rat lung. In this study, we investigated the effect of sustained hypoxic ventilation o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 282 5 شماره
صفحات -
تاریخ انتشار 2002